Search results for "Levenshtein automaton"
showing 3 items of 3 documents
Suffix Automata and Standard Sturmian Words
2007
Blumer et al. showed (cf. [3,2]) that the suffix automaton of a word w must have at least |w|+1 states and at most 2|w|-1 states. In this paper we characterize the language L of all binary words w whose minimal suffix automaton S(w) has exactly |w| + 1 states; they are precisely all prefixes of standard Sturmian words. In particular, we give an explicit construction of suffix automaton of words that are palindromic prefixes of standard words. Moreover, we establish a necessary and sufficient condition on S(w) which ensures that if w ∈ L and a ∈ {0, 1} then wa ∈ L. By using such a condition, we show how to construct the automaton S(wa) from S(w). More generally, we provide a simple construct…
Automata and forbidden words
1998
Abstract Let L ( M ) be the (factorial) language avoiding a given anti-factorial language M . We design an automaton accepting L ( M ) and built from the language M . The construction is effective if M is finite. If M is the set of minimal forbidden words of a single word ν, the automaton turns out to be the factor automaton of ν (the minimal automaton accepting the set of factors of ν). We also give an algorithm that builds the trie of M from the factor automaton of a single word. It yields a nontrivial upper bound on the number of minimal forbidden words of a word.
Minimal forbidden words and factor automata
1998
International audience; Let L(M) be the (factorial) language avoiding a given antifactorial language M. We design an automaton accepting L(M) and built from the language M. The construction is eff ective if M is finite. If M is the set of minimal forbidden words of a single word v, the automaton turns out to be the factor automaton of v (the minimal automaton accepting the set of factors of v). We also give an algorithm that builds the trie of M from the factor automaton of a single word. It yields a non-trivial upper bound on the number of minimal forbidden words of a word.